UNITED STES ENVIRONMENTAL PROTECTION GENCY

DATE March 4, 1982

UHJECT

Request for Comments, Pine Ford Project, Missoury

Thomas 2 Budd

Thomas L Budd, Acting Assistant Regional Administrator for Policy and Management

BIG RIVER MINITUE BASSE

Alan Abramson, Director, Water Management Division
Dave Wagoner, Director, Air and Waste Management Division
John Wicklund, Director, Environmental Services Division

The St Louis District Corps of Engineers has requested our response to several questions regarding benefits for water quality releases and controlling heavy metal contamination in the Big River Basin. The enclosed letter and data explain their request

An answer to this letter is due March 15 I request your staffs prepare responses to those issues that affect your programs Specifically

WATR - Questions la, lb, lc, and 2
ARWM - Questions 3a, 3b, and 3c.

ENSV - Any questions deemed appropriate to your program

Please provide your responses to the ENRV Branch by March 10

Little project-related information was provided in the letter— If your staff is unfamiliar with the Pine Ford Project, please contact Bob Fenemore for more information

Enclosure

40108358

SUPERFUND RECORDS

FPA ARHMINAZM

14.4- 12.

RE TUN VIKC, N

LMSCD-BF

DEPARTMENT OF THE ARMY

ST LOUIS DISTRICT CORPS OF ENGINEERS
210 TUCKER BOULEVARD NORTH
ST LOUIS MISSOURI 63101

25 February 1982 MAR 2 1982

Mr John J Franke, Jr Regional Administrator US Environmental Protection Agency 324 East 11th Street Kansas City, MO 64106

15/ 18 LL CI

Dear Mr Franke

In July 1976, soon after we received initial Phase I planning funds for Pine Ford, an authorized lake project on the Big River, we contacted your agency and requested a revalidation of the benefits attributed to flow augmentation for water quality purposes on the lower Big River and in the reach of the lower Meramec River below the confluence with the Big River

Although our representatives coiresponded back and forth through September 1978, we were unable to resolve our differing interpretations of the PL 92-500 provisions, and the policy of EPA at that time dictated that flow augmentation had no benefit whatsoever as a water quality measure

The Corps of Engineers then initiated an abbreviated water quality testing program to define the nature of the problem (if any) and to estimate the effects that could be achieved with flow augmentation. Unfortunately, nature was not cooperative in providing low flows that would establish a "worse-case" condition and as you may note from the inclosed data the results were inconclusive

We are now in the final stages of reformulating the Pine Ford project and are examining a variety of plans in addition to the authorized lake plan. We expect to provide a draft report to our reviewing authorities in March 1982 and will complete the final Phase I General Design Memorandum in September 1982. From this schedule it is apparent that we are quickly approaching our final opportunity for presenting whatever beneficial water quality effects that might be associated with controlled releases from a reservoir plan

In our own agency, we have observed a number of changes occurring in recent years, changes in problem-solving philosophy, changes in policy and, to be sure, changes in funding and staffing capabilities. If these same sort of changes have been experienced by EPA, perhaps it is now possible to consider measures that should have some beneficial effect, however limited, and which could be implemented at low cost and with high reliability as compared to expensive, state-of-the-art measures that may consume much energy and suffer from reliability problems either due to the philiticated technology or due

25 February 1982

LMSED-BF Mr John J Franke, Jr

to the high level of operator competence that might be required. In addition to these generalized changes, the Pine Ford situation has been altered by the heavy metals problems which have been recognized only since 1977 and which still have not been completely defined. In this regard, Mr. Bob Fenemore of your agency has been participating in the coordination meetings and briefings during the course of the heavy metals studies being conducted by the Columbia National Fisheries Research Laboratory

Let me now get down to the purpose of this letter and address some questions for your consideration. Your reply will serve to document the current position of the Environmental Protection Agency in our draft report

- 1 On the basis of the inclosed test data and other data that may be available in your files, would your agency conclude that a pool with regulated releases in the Big River could have a beneficial water quality effect under the following circumstances
- a Providing reliable minimum flows of a given dissolved oxygen content such that the natural assimilative or self-cleaning ability of the river would be maintained, with particular effect on non-point contaminants deriving from agricultural operations and individual home treatment systems
- b Providing a vehicle by which to enforce competent operation of upstream municipal treatment systems. That is, if certain water quality parameters were required in the pool, the local assurances that we could require to be furnished prior to construction could specify certain operating standards. Once turnished, the assurances could be enforced as provided by Section 221 of Public Law 91-611
- c Providing an emergency "flushing" capability in the event that treatment facilities downstream would malfunction and discharge untreated waste into the stream
- 2 If you conclude that some benefit could be derived, we would appreciate your opinion as to the dollar value of the benefit or your suggestions as to how such a value could be computed
- In regard to the heavy-metals problems (preliminary test data were furnished by letter of 20 January 1982 to Messrs Vest and Fenemore), we have assumed that some degree of Corps of Engineers involvement would derive from the fact that Congress originally authorized a lake project and that such a project could not serve the anticipated purposes of recreation and fish and wildlife conservation without first controlling the heavy metals situation For cost-benefit analysis, we have also assumed that, since the environmental/fish and wildlife benefit of controlling the contamination would not be quantifiable, we could assign a benefit equal to the cost of remedial measures. In effect then, we would be evaluating the various measures on the basis of effectiveness and least cost

LMSED-BF Mr John J Franke, Jr 25 February 1982

- a Could your agency support this assumption that costs would be cqually offset by benefits?
- b If we would recommend a lake project and necessary remedial measures for controlling heavy metals, a source of funds for accomplishing the measures could be problematic. You might well appreciate that this would be an unprecedented activity for the Corps of Engineers although some parallel comparison might be made with strip mine reclamation activities. In any event, your comments would be appreciated concerning potential funding sources with particular reference to the "super fund" and pending legislation related thereto
- c It has also come to our attention that the EPA has recently contracted for studies pertaining to heavy metals within the study area. If any results, preliminary or otherwise, are available we would be very much interested in receiving them as soon as possible

I realize that I have asked difficult questions and that time will not permit the type of detailed analysis that you would prefer to accomplish and that we would prefer to receive Nevertheless, I would appreciate your earliest consideration of these matters and receipt of your response in sufficent time (say by 15 March 1982) to be included in our draft report

Sincerely,

l Incl As stated

ROBERT J DACEY
Colonel, CE

District Engineer

Copy Furnished
Mr Bob Fenemore
US Environmental Piotection Agency
324 Fast 11th Street
Kansas City, MO 64106

MERAMEC STUDY EUREKA

Date	Time	Air Temp °C	H ₂ O Temp OC	D 0 mg/l	pН	Weather	Flow cfs X Daily	BOD mg/l	Alkalinity mg/ caco ₃	COD	NO3-N mg/l	NH3-N mg/l	0-P0 ¹ mg/l	T-PO4 mg/1	T-Hardness mg/l CaCOg	Con- dutance umbos/cn	Turbidity NTU
5/13	1250	28	23	3 4	7 6	PC	16 10										
6/14 6/14	0700 1530	21 30	22 25	n 7 9 7	7 c 7 8	s s	1530 1530	, 2	166	5	19	10	LT 0	07	192	392	3
6/15	C650	22	24	6 7	76	s	1450	2 1	58	5	16	01	LT 0	04	190	383	6
6/27	1700	30	24	10 1	7 5	OC	1050										
28 28	0700 1720	23 19	23 22	6 5 7 5	7 5 7 6	OC R	1040 1040	2 0	174	5	25	01	LT 0	03	204	377	3
6/29	0700	20	21	6 6	7 3	oc	1180	1 5	170	3	29	01	LT 01	04	187	371	6
7/16	1730	31	30	8 8	7 4	S	748										
7,17 7/17	0730 1600	21 30	28 29	9 6 9 6	7 7 6 5	s s	734 734	1 3	171	2	01	LT 0	1 LT 0	04	138	379	4
7/18 7/18	07+5 15 ₂ ^	17 28	25 28	6 4 10 1	7 5 6 5	S S	7 5 715	1 2	168	LT 1	LT 01	01	LT 0	05	146	385	5
7/19 7/19	0730 545	19 29	2 ₀ 27	6 6 9 9	7 6 6 7	s s	700 700	1 5	173	4	01	01	02	2 06	144	388	5
7/20	0730	21	24	6 7	7 6	s	690	1 1	189	2	01	LT O	1 LT 0	04	152	398	4
8/13	1555	31	25	7 5	6 5	PC	4090										
8/14	07 0 1700	15 17	23 23	6 9 7 6	6 8 6 8	S R	27 10 27 10	1 7	82		28	02	0	14	50	205	48
8/15	07 20	17	55	7 9	7 6	R	1830	9	110		33	01	0	1 09	96	258	25

MERAMEC STUDY EUREKA

Date 1979	Time	Air Temp °C	H ₂ O Temp OC	D O mg/l	рН	Weather	Flow cfs X Daily		Alkalinity mg/ CaCO3		NO3-N	MH3-N	0-P04 rg/1	T-P04 mg/l	T-Hardness mg/l CqCOg	Con- dutance umhos/cn	Turb dity VIJ	
10/2	0900	15	19	8 3	7 4	s	495		176	3	LT	01 LT 01	LT 01	07	158	377	6	
10/2	1545	24	21	9 4	7 1	S	495											
10/3	0830	11	18	8 8	7 3	s	476	1 2	174	3	LT	01 LT 01	LT 01	04	154	382	5	

MERAMEC STUDY SULLIVAN

Date 1979	Time	Air Temp ^O C	H ₂ O Temp OC	D O mg/l	рĦ	Weather	Flow cfs X Daily	BOD mg/l	Alkalini*y mg/ CaCO ₃	COD mg/l	NO3-N mg/l	NH3-N mg31	0-PO4 mg/l	T-PO4 mg/l	~-Hardness mg/l CqCOg	Con- dutance umhos/cn	Turbidity NTU
6/13	1440	31	າາ	3 3		PC	7 57										
6/14 6/14		5 28	20 22	7 7 9 4	7 7 7 9	s s	697 697		145	0	25	01	LT 01	02	160	316	2
6/15	0540	21	21	7 7	7 7	s	651		147	6	25	LT 01	LT 01	02	158	305	1
6/27	60	27	22	8 9	7 2	oc	441										
/28 6/28	053 600	18 23	21 22	7 5 8 2	7 4 7 4	OC R	506 506	1 1	160	3	37	LT 01	_T 01	02	168	318	1
6/29	0 535	18	20	6 9	7 o	00	574		128	12	36	01	02	03	142	314	17
7/16	c00	32	28	8 3	7 0	s	332										
7/17 7/17	0545 1620	18 29	28 28	7 0 8 0	7 3 7 0	s s	320 320		164	1	17	01	01	05	132	344	11
7/8 7/18	0545 1630	12 28	24 25	6 8 8 8	7 6 7 1	s s	309 309	6	164	1	18	01	02	04	130	344	1
7/19 7/19	0545 1630	13 28	22 25	7 1 8 8	7 1 7 1	s s	305 305		165	1	17	LT 01	LT 01	03	130	344	1
7/20	0545	14	25	7 5	7 6	S	297		165	LT 1	14	LT 01	LT 01	05	131	342	11
13	1650	27	22	9 7	6 4	S	758										
8/4 8/14	0570 1700	16 21	21 22	8 4 8 8	7 3 6 6	s c	630 630		135		29	02	LT 01	04	118	291	19
8/15	0530	15	21	8 3	6 9	R	860		137		27	02	LT 01	32	104	291	60

MERAMEC STUDY SULLIVAN

Date 1979	Time	Air Temp OC	H ₂ O Temp OC	D 0 mg/l	рĦ	Weather	Flow cfs X Daily		Alkalinity mg/ CaCO3			NH3-V mg/1	0-P04 mg/1	T-PO4 mg/l	T-Hardness mg/l CaCOg	Con- dulance umhos/cn	Turbidity NTU
10/2	0720	;	7	भ ३	7 1	S	282		168	2	14	02	LT 01	03	142	348	2
10/2	0,	2	13	3 0	~ o	S	282										
0/3	0700	Q	16	8 4	7 0	s	280	5	170	2	14	02	01	02	142	348	1

MERA IC STUDY UNION

Date 1979	Time	Air Temp ^O C	H ₂ O Temp o _C	D 0	Нq	Weather	Flow cfs X Daily	BOD mg/l	Alkalinity mg/ CaCO3	COD mg/l	103-N mg/1	NH3-N mg/l	0-P04 mg/l	T-P04 mg/l	T-Hardness mg/l CaCOg	Con- dutance umhos/cn	Turbidity NTU
6/13	1340	37	24	7 2		PC	128										
6/14 6/14	1635 445		22 24	6 3 7 7	7 5 7 5	s s	121 121		100	8	13	01	LT 01	04	137	273	3
6/5	0635	21	23	5 9	7 4	s	115		111	11	11	LT 01	LT 01	04	130	275	3
6/27	1540	28	24	8 9	7 4	ос	168										
5/28	0e º0 17 •5	20 25	22 22	6 8 7 7	7 4 7 8	OC R	160 160	1 2	133	8	14	01	01	05	142	280	3
5/29	003F	19	21	6 3	7 5	ar	161		111	12	22	04	05	18	121	278	19
7/6	1700	31	30	7 9	7 0	s	48										
	0645 1530	21 30	28 29	6 3 7 7	7 4 7 1	s s	45 45		126	Ļ	02	01	02	08	114	280	14
7/8 7/8	0o45 545	15 29	25 28	6 3 7 8	7 7 7 1	s s	42 42	1 3	130	6	01	03	03	08	100	308	3
	0645 1,45	15 27	23 26	6 4 7 9	7 2 7 4	s s	39 39		137	8	01	02	01	08	104	308	4
7/20	0545	19	23	7 2	7 6	s	38		136	5	01	05	02	09	112	312	3
3	600	27	24	7 0	6 4	s	1440										
0/14 8/14	5635 1600	8 21	22 24	7 5 6 9	6 9 6 6	s c	541 541		36		28	03	02	14	3	103	36

8/15 to Sample

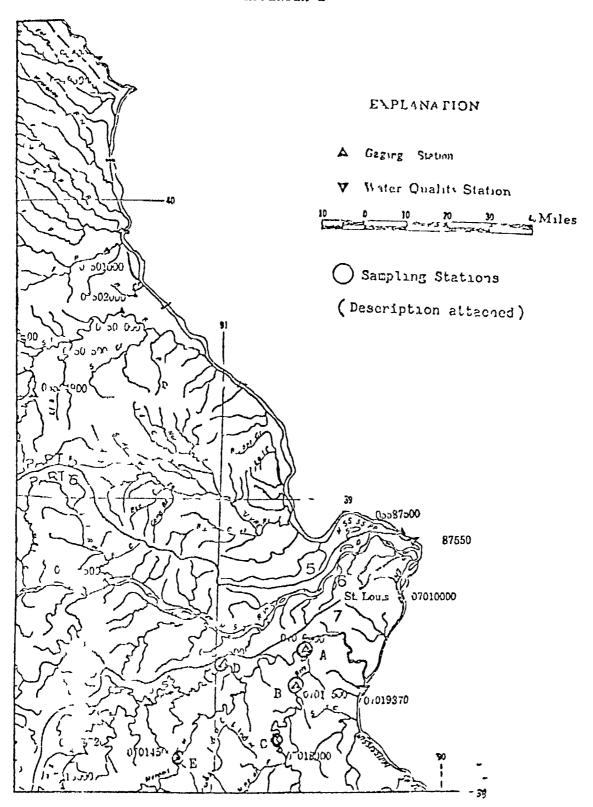
MERAMEC STUDY UNION

Date 1979	Time	Air Temp ^O C	C C Temp	D 0 mg/l	рĦ	Weather	Flow c's X Daily		Alkalinity mg/ CaCO ₃	COD mg/l	103-N mg/1	NH3-N	0-P04 mg/l	T-PO4 mg/l	T-Hardness mg/l CqCO3	Con- dutance umhos/en	Turbidity NTU
10/2 10 ₄		3 2	7	7 7 0 1	7 > 7	s s	33 33		142	8	02	36	04	12	10	311	6
10/3	UJ J	o	17	7 6	7 0	s	32	5	138	7	02	10	07	14	108	317	5

MERAMEC STUDY BROWNS FORD

Date 1979	Time	Air Temp ^O C	H ₂ O Temp OC	D O mg/l	рЧ	Weather	Flow cfs X Daily	BOD mg/l	Alkalinity mg/ CaCO ₃	COD mg/l	NO3-N	NH3-N mg/l	0-P04 mg/l	T-PC4 mg/l	T-Hardness mg/l CocO3	Con- dutance umros/cn	Turbidi y NTU
6/13	1500	27	23	5 i		ъС	266										
6/14 6/14	05 ⁵ 1445	13 30	21 24	7 8 10 2	~ 7 7 9	s s	251 251		215	7	31	LT 01	LT 01	04	254	385	4
6/15	0530	16	22	7 3	7 7	s	237		2 7	7	26	LT 01	LT 01	04	253	381	5
6.(27	1620	28	24	8 1	7 4	oc	169										
6/28 6/28	061 ⁵ 1630	9 25	24 25	7 7 7 7	7 4 7 6	OC R	174 174	1 9	225	4	26	01	LT 01	04	268	485	4
6/29	0030	9	23	7 5	7 5	С	197		222	8	29	LT 01	LT 01	05	270	475	Ħ
7/16	1650	32	30	8 1	7 2	s	42										
7/17 7/17	06 50 1645	21 31	27 29	7 3 8 4	7 5 7 0	s s	135 135		211	3	LT 0	1 LT 01	LT 01	05	206	484	3
7/18 7/8	0630 1545	13 29	26 28	7 6 7 8	7 7 7 1	s s	130 130	1 4	214	6	LT O	1 LT 01	LT 01	05	212	510	4
7/19 7/ 9	0645 1645	14 26	25 27	7 5 8 6	7 6 7 5	S PC	127 127		217	5	r. 0	1 LT 01	LT 01	07	220	515	Ħ
7/20	06 35	14	25	7 3	7 7	S	123		214	3	LT O	1 LT 01	LT 01	05	207	482	Ħ
3	7 ∠ 0	26	24	98	6 8	PC	9										
8/14 8/14	054C 555	17 25	22 24	7 9 9 5	7 3 7 2	s c	179 179		205		09	LT 01	LT 01	04	200	461	17
8/15	0545	17	21	8 0	8 0	R	328		199		09	03	LT 01	05	190	463	12

MERAMEC STUDY BROWNS FORD


Da e 1979	Time	Air Temp °C		D O rg/l	pН	Weather	Flow cfs X Daily		Alkalinity mg/ CaCO ₃	COD mg/l	103-N mg/1	NH3-N mg71		T-PO4 mg/l	T-Hardness mg/l CqCO ₃	Con- dutance umhos/cn	Turbidity NTU	
10/2 10/2	0730 33	5 1		7 0 5	_	s s	92 92		240	3	LT	01 LT	01 LT 01	05	250	530	6	
10/3	07 C	5	15	8 3	7 2	s	89	7	236	4	LT	01 05	LT 01	04	240	538	6	

MERAMEC STUDY BYRNESVILLE

Date 1979	Time	A r Temp °C	H ₂ O Temp OC	D O	рН	Weather	Flow cfs X Daily	BOD mg/l	Alkalinity mg/ CaCO ₃	COD mg/l	NO 3-N пя71	NH3-4 7871	O-PO4 mg/1	T-PO4 mg/l	T-Hardness mg/l CaCO3	Con- dutance umhos/en	Turbidity NTU
6/13	1700	27	24) 3		PC	315										
6/14 6/4	06 15 1525	15 31	23 24	8 0 8 7	7 b 7 8	s s	294 294		209	5	20	01	LT 01	05	25 <i>2</i>	474	3
6/15	06 15	16	24	7 9	7 7	s	285		208	8	26	LT 01	LT 01	04	250	477	10
6/27	1545	27	24	8 6	7 1	oc	188										
28 6/28	05 5 1545	19 25	22 23	6 6 7 8	7 1 7 0	oc oc	190 190	25	229	ħ	20	01	LT 01	03	274	474	3
6/29	0540	16	21	6 9	7 3	С	107		215	7	24	LT 01	LT 01	04	254	477	6
7/16	1610	31	28	8 0	6 9	s	163										
7/7	05→0 1730	19 24	25 27	8 5 8 4	7 3 7 0	s c	155 155		219	3	11	LT 01	LT 01	04	212	506	3
7/18 7/18	05+5 1730	11 25	24 26	6 4 8 7	7 8 6 6	s s	148 143	1 0	222	3	10	LT 01	LT 01	03	216	510	3
7/ 9 7/19	0545 1730	11 24	23 25	6 6 8 8	7 6 7	S PC	142 142		224	2	09	LT 01	92	04	224	517	3
7/20	C545	12	23	6 7	7 7	s	136		226	1	07	LT 01	LT 01	04	230	506	3
3	1365	27	24	7 6	6 5	s	461										
8/14 8/4	0620 1625	18 21	23 24	7 8 8 3	7 3 7 0	s c	371 377		143		20	02	LT 01	07	120	323	15
8/15	06 O	18	22	6 9	8 1	R	535		178		20	04	LT 01	05	162	398	12

MERAMEC STUDY BYRNESVILLE

Date 1979	Tice	Air Temp OC	H ₂ O Temp O(D 0 ng/l	рH	Weather	Flow c's X Daily		Alalinity mg/CaCO3			NH3- mg/1		-PO4 g/l	T-PO4 mg/l	T-Hardness mg/l CoCO3	Con- dutance umhos/en	Turbidity NTU
10/2 10/2	08 10 15 15	15	‡B	٥ 5	7 2	S S	108 107		228	4	LT	01 LT	01 LT	01	С8	236	514	11
10/3	75^0	6	18	8 8	2	s	07	1 +	228	6	LT	01	05 LT	01	06	248	517	10

APPENDIX I

Description of Sampling Stations

Station <u>Designation</u>	USGS or Corps Station No	Stream Name & Description
A	U S G S 07019000	Meramec at Eureka
В	បន្ទូន 07018500	Big River at Byrnesville
С	Corps Big River Sampling Sta No 4	Big River
D	USGS 07016500	Bourbeuse
E	USGS 07014500	Meramec